III

 The University of Georgia

 The University of Georgia
 Department of Mathematics and Science Education
 J. Wilson, EMAT 6680

EMAT 6680-Assignment 4

By Brandon Samples

Question: Prove that the three perpendicular bisectors of the sides of a triangle are concurrent.

Proof. Let T be any triangle and place the triangle with its base on the x-axis such that the third corner is on the y-axis. (See Figure)

First, label the three corner points $(a, 0),(b, 0)$ and $(0, m)$, and note that two of the midpoints are $\left(\frac{a}{2}, \frac{m}{2}\right)$ and $\left(\frac{b}{2}, \frac{m}{2}\right)$.

Now, the perpendicular bisectors going through these two midpoints are given by the equations:

$$
\begin{aligned}
& y=\frac{a}{m}\left(x-\frac{a}{2}\right)+\frac{m}{2} \\
& y=\frac{b}{m}\left(x-\frac{b}{2}\right)+\frac{m}{2}
\end{aligned}
$$

Let P represent the intersection point. To determine the coordinates of P, let's set these equations equal to each other. Specifically, we have

$$
\begin{aligned}
\frac{a}{m}\left(x-\frac{a}{2}\right)+\frac{m}{2} & =\frac{b}{m}\left(x-\frac{b}{2}\right)+\frac{m}{2} \\
\Longrightarrow \frac{a}{m}\left(x-\frac{a}{2}\right) & =\frac{b}{m}\left(x-\frac{b}{2}\right) \\
\Longrightarrow a(2 x-a) & =b(2 x-b) \\
\Longrightarrow 2 a x-a^{2} & =2 b x-b^{2} \\
\Longrightarrow 2 x(a-b) & =a^{2}-b^{2} \\
\Longrightarrow 2 x(a-b) & =(a+b)(a-b) \\
\Longrightarrow 2 x & =a+b \\
\Longrightarrow x & =\frac{a+b}{2}
\end{aligned}
$$

Therefore, we see that the x-coordinate of P is $\frac{a+b}{2}$, hence the y-coordinate of P is

$$
\frac{a}{m}\left(\frac{a+b}{2}-\frac{a}{2}\right)+\frac{m}{2}=\frac{a}{m}\left(\frac{b}{2}\right)+\frac{m}{2}=\frac{a b+m^{2}}{2 m}
$$

Now, the midpoint of the base has coordinates

$$
\left(\frac{a+b}{2}, 0\right)
$$

so the perpendicular bisector is the vertical line

$$
x=\frac{a+b}{2}
$$

and therefore passes through P.

